Тактильные рецепторы на коже рук. Полиморфия чувств: как работают рецепторы кожи


Рецепторы кожи отвечают за нашу способность чувствовать прикосновения, тепло, холод и боль. Рецепторы - это видоизмененные нервные окончания, которые могут быть как свободными неспециализированными, так и инкапсулированными сложными структурам, которые отвечают за определенный вид чувствительности. Рецепторы выполняют сигнальную роль, поэтому они необходимы человеку для эффективного и безопасного взаимодействия с внешней средой..

Основные виды рецепторов кожи и их функции

Все виды рецепторов можно разделить на три группы. Первая группа рецепторов отвечает за тактильную чувствительность. К ним относят тельца Пачини, Мейснера, Меркеля и Руффини. Вторая группа - это
терморецепторы: колбы Краузе и свободные нервные окончания . К третей группе относятся болевые рецепторы.

К вибрации более чувствительны ладони и пальцы: в связи с большим количеством рецепторов Пачини в этих зонах.

Все виды рецепторов имеют разные зоны по ширине чувствительности, в зависимости от функции, которую они выполняют.

Рецепторы кожи:
. рецепторы кожи, отвечающие за тактильную чувствительность;
. рецепторы кожи, которые реагируют на смену температуры;
. ноцицепторы: рецепторы кожи, отвечающие за болевую чувствительность.

Рецепторы кожи, отвечающие за тактильную чувствительность

Существует несколько типов рецепторов, отвечающих за тактильные ощущения:
. тельца Пачини — это быстро адаптирующиеся к перемене давления рецепторы, имеющие широкие рецептивные поля. Эти рецепторы расположенны в подкожно-жировой клетчатке и отвечают за грубую чувствительность;
. тельца Мейснера расположены в дерме и имеют узкие поля рецепции, что обуславливает их восприятие тонкой чувствительности;
. тельца Меркеля — медленно адаптируются и имеют узкие рецепторные поля, в связи с чем их основная функция — ощущение структуры поверхности;
. тельца Руффини отвечают за ощущения постоянного давления и располагаются, в основном, в области подошвы стоп.

Также отдельно выделяют рецепторы, расположенные внутри волосяного фолликула, которые сигнализируют об отклонении волоса от его первоначального положения.

Рецепторы кожи, которые реагируют на смену температуры

Согласно некоторым теориям для восприятия тепла и холода существуют разные типы рецепторов. За восприятие холодного отвечают колбы Краузе, а горячего - свободные нервные окончания. Другие теории терморецепции утверждают, что именно свободные нервные окончания предназначены для восприятия температуры. В таком случае, тепловые раздражения анализируются глубокими нервными волокнами, а холодовые — поверхностными. Между собой рецепторы температурной чувствительности образуют «мозаику», состоящую из холодовых и тепловых пятен.

Ноцицепторы: рецепторы кожи, отвечающие за болевую чувствительность

На данном этапе нет окончательного мнения относительно наличия или отсутствия болевых рецепторов. Одни теории основаны на том, что свободные нервные окончания, которые расположены в коже, отвечают за восприятие боли.

Длительное и сильное болевое раздражение стимулирует возникновение потока высходящих импульсов, в связи с чем замедляется адаптация к боли.

Другие теории отрицают наличие отдельных ноцицепторов. Предполагается, что тактильные и температурные рецепторы обладают определенным порогом раздражения, при превышении которого возникает боль.

3 белковые рецепторы

белковые молекулы или молекулярные комплексы, расположенные на поверхности клетки или внутри ее, которые способны специфически связывать другие молекулы, несущие внешние для клетки регуляторные сигналы (напр. , гормоны, нейромедиаторы, факторы роста, лимфокины, лекарство и т.п. ), или реагировать на физические факторы (напр. , свет). Благодаря конформационным изменениям, индуцируемым этими сигналами, Б.р. запускают определенные каскадные биохимические процессы в клетке, в результате чего реализуется ее физиологический ответ на внешний сигнал. Большинство Б.р. локализовано в плазматической мембране и представляет собой пронизывающие мембрану гликопротеиды. Они взаимодействуют с белковыми или пептидными гормонами, а также с низкомолекулярными биорегуляторами, напр. с простагландинами, аминокислотами. Рецептор света - родопсин - локализован в мембранных структурах сетчатки глаза. Внутриклеточные Б.р. обычно локализованы в ядре и взаимодействуют со стероидными гормонами и гормонами щитовидной железы (производными тирозина). Известно несколько механизмов, с помощью которых активированные Б.р. запускают биохимические процессы в клетке; напр. , при взаимодействии ацетилхолина с никотиновым холинорецептором (чувствителен не только к ацетилхолину, но также и к никотину), локализованным в постсинаптической мембране, открывается канал для ионов натрия. Увеличение внутриклеточного содержания Na + приводит к деполяризации мембраны, что обусловливает передачу нервного импульса. Другая группа мембранных Б.р. сопряжена с мембрано-связанными регуляторными ферментами, в частности с аденилатциклазой, гуанилатциклазой, фосфолипазой С. К Б.р., активирующим аденилатциклазу, относятся, напр. , β-адренергические рецепторы, рецепторы глюкагона, тиреотропного гормона; к Б.р., ингибирующим этот фермент, относятся α2-адренергические рецепторы, некоторые опиоидные рецепторы (см. опиоидные пептиды), рецепторы соматостатина и др. Сопряжение Б.р. со всеми указанными ферментами осуществляется через регуляторные Г-белки (см. Г-белки). Некоторые мембранные Б.р., обладают собственной ферментативной (протеинкиназной) активностью (напр. , рецепторы инсулина и различных факторов роста). Эти протеинкиназы регулируют активность различных белков путем их фосфорилирования по остаткам тирозина. Специфические гормоны стимулируют протеинкиназную активность и аутофосфорилирование молекул Б.р., что необходимо для преобразования ими регуляторных сигналов. Б.р. могут состоять из одной или нескольких полипептидных цепей, ассоциированных благодаря невалентным взаимодействиям или сшивкам дисульфидными связями; напр. , Б.р. для инсулина состоит из четырех полипептидных цепей двух типов (α2β2), которые сшиты дисульфидными связями. Впервые термин "рецепторная субстанция" предложен Дж. Лэнгли в 1906 г. для обозначения компонентов мышечной клетки, за которые конкурируют никотин и кураре, блокирующие передачу сигнала от нервного окончания к мышце.

4 адренергические рецепторы

5 рецепторы сетчатки

6 сиротские рецепторы

7 тактильные индикаторные клавиши

8 адренергические рецепторы

9 активируемые протеазами рецепторы

10 альфа-рецепторы

11 вкусовые рецепторы

12 гептасульфидные рецепторы циклодекстрина

13 глутаматные рецепторы

14 кальцийчувствительный рецепторы

15 колбочковые рецепторы сетчатки

16 меланокортиновые рецепторы

17 метаботропные рецепторы глутамата

18 многофункциональные рецепторы, такие как авидин или стрептавидин

19 мотилиновые рецепторы

Тельца Мейсснера , расположенные в поверхностных слоях собственно кожи (дермы) губ и собственно слизистой оболочки рта, реагируют на прикосновение. При усилении механического раздражения возбуждаются диски Меркеля , которые локализуются в глубоких слоях кожного эпидермиса и слизистого эпителия. Ощущения давления и вибрации возникают при раздражении телец Пачини , расположенных в подкожной клетчатке и подслизистом слое. В связи с глубоким залеганием телец Пачини, местная апликационная анестезия поверхностных слоев слизистой оболочки и кожи не устраняет ощущения давления и вибрации, о чем необходимо предупредить пациента перед операцией в этих условиях.

От большинства тактильных механорецепторов ротового отдела сенсорные сигналы поступают в ЦНС по миелинизированным нервным волокнам Аb со скоростью 30-70 м/с. Центральный отдел тактильной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Тактильные ощущения можно вызвать раздражением только определенных участков кожи и слизистых, которые называются чувствительными тактильными точками . Пространственный порог тактильной чувствительности обратно пропорционален количеству рецепторов на единицу площади и прямо пропорционален расстоянию между рецепторами. Пространственный порог тактильных ощущений на кончиках пальцев, языка и губ, значительно ниже (1-3 мм), чем на других участках тела (50-100 мм). Это обусловлено различием плотности рецепторов на единицу поверхности.

Наиболее плотно тактильные рецепторы расположены на кончике языка, слизистой оболочке и красной кайме губ, что необходимо для апробации пищи на съедобность. Наиболее чувствительна к механическим раздражениям верхняя губа. Относительно высоким уровнем тактильной чувствительности отличается слизистая оболочка твердого неба, что обеспечивает формирования пищевого комка в процессе жевания. Наименьшей тактильной чувствительностью обладает слизистая оболочка вестибулярной поверхности десен. При этом в области десневых сосочков отмечается убывающий градиент чувствительности от резцов к молярам.

Метод исследования абсолютных или пространственных порогов тактильной чувствительности, называют эстезиометрией . Изучение тактильного восприятия слизистой оболочкой полости рта позволяет прогнозировать индивидуальные особенности адаптации к съемным зубным протезам у больных с частичной или полной адентией. Протез является инородным телом, раздражающим тактильные рецепторы, что ведет к рефлекторной гиперсаливации, возникновению рвотного рефлекса, нарушению координации жевания, глотания и речи. Однако большинство тактильных рецепторов относится к быстроадаптирующимся. В связи с этим, а также вследствие отсутствия неадаптирующихся тактильных рецепторов, существенных проблем с привыканием к зубным протезам, как правило, не возникает. При этом наряду с приспособлением рецепторного аппарата происходит адаптация проводникового и центрального отделов анализатора. Это является результатом высокой пластичности нервных центров, обеспечивающих быстрое приспособление функций жевания, глотания и речи к новым условиям. Зубной протез перестает ощущаться как инородное тело, наблюдается восстановление эффективности жевания, угасает рвотный рефлекс, нормализуются саливация, глотание и речь.


Температурная рецепция в ротовом отделе обеспечивает восприятие термических раздражителей - тепла и холода. Терморецепторы, воспринимающие холод, гистологически представлены колбами Краузе, расположенными в эпидермисе красной каймы губ и эпителии слизистой оболочки рта. Тепловые рецепторы – тельца Руффини, локализуются глубже - в собственно дермальном слое губ и в собственно слизистой оболочке рта. От рецепторов холода отходят тонкие миелинизированные волокна типа Аd со скоростью проведения возбуждения 5-15 м/с, а от рецепторов тепла – безмиелиновые волокна типа С (0,5-3 м/с). Центральный отдел температурной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Как правило, тепловые и холодовые рецепторы возбуждаются соответствующими по качеству стимулами. Однако в определенных условиях холодовые рецепторы могут воспринимать тепловые раздражители при температуре свыше 45 0 С (например, при погружении в горячую ванну). В зависимости от исходных условий, одна и та же температура может вызывать и ощущение тепла и ощущение холода.

Преобладание в коже и слизистых терморецепторов, реагирующие на холодовые стимулы (10:1), и глубокое залегание тепловых рецепторов, обусловливают более высокую чувствительность к холоду. При этом холодовая чувствительность снижается от передних отделов рта к задним, а тепловая, наоборот, повышается. Наибольшей чувствительностью к температурным раздражениям отличаются кончик языка и красная кайма губ, что обеспечивает апробацию пригодности потребляемой пищи. Малочувствительна к холоду и теплу слизистая оболочка щек. Полностью отсутствует восприятие тепла в центре твердого неба, а центральная часть задней поверхности языка не воспринимает ни тепловые ни холодовые воздействия.

Способностью к восприятию температуры обладают рецепторы дентина и пульпы зубов. Порог холодовой чувствительности для резцов в среднем составляет 20 0 С, а для клыков, премоляров и моляров – 11-13 0 С. Порогом тепловой чувствительности для резцов является температура около 52 0 С, для остальных зубов – 60-70 0 С.

Исследование температурной чувствительности путем определения тепловых или холодовых порогов называют термоэстезиометрией . Для исследования температурной чувствительности зубов их орошают горячей или, чаще, холодной водой либо используют ватный тампон, смоченный в эфире, который, испаряясь, охлаждает зуб. Если температурные раздражители вызывают адекватные ощущения тепла или холода, это свидетельствует о нормальном состоянии тканей зуба. При кариесе холодовое раздражение вызывает боль. При пульпите боль вызывают тепловые стимулы, а холодовые, наоборот, уменьшают ее. Депульпированный зуб не реагирует ни на холод, ни на тепло.

Тактильная и температурная чувствительностьротового отделадополняетсямышечно–суставной рецепцией , которая обеспечивает чувство пространственного положения нижней челюсти относительно верхней, ощущение ее движения, восприятие сократительного усилия мышц. Этот вид чувствительности обеспечивается проприорецепторами , которые локализуются в интрафузальных мышечных волокнах, височно-нижнечелюстных суставах, в связочном аппарате жевательных и мимических мышц. Сенсорные сигналы от проприорецепторов поступают в ЦНС преимущественно по толстым миелинизированным нервным волокнам типа Аa со скоростью 70-120 м/с. Центральный отдел проприоцептивной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Важнейшей сенсорной функцией ротового отдела является болевая рецепция , которая обеспечивает восприятие стимулов, способных привести к повреждению или разрушающих ткани организма. В отличие от всех других видов сенсорных модальностей болевая рецепция не имеет адекватного раздражителя. Практически любой сверхсильный стимул может вызывать ощущение боли.

Боль - это универсальное неприятное сенсорное ощущение и эмоциональное переживание, связанное с угрозой разрушения или уже произошедшим повреждением ткани.

В соответствии с биологической значимостью различают два вида боли: физиологическую и патологическую . Основные задачи физиологической боли:

1) информирование организма о любых формах угрозы его существованию или целостности,

2) участие в организации адаптивного поведения, направленного на предупреждение распространения и ликвидацию повреждения или устранение его угрозы.

Боль обеспечивает мобилизацию большинства систем организма для защиты от повреждения тканей и сопровождается развертыванием оборонительного поведения. В зависимости от ситуации ощущение боли и сопровождающие ее поведенческие и рефлекторные реакции могут сознательно подавляться. Однако, гуморальные, а также вегетативные сдвиги сохраняются в любом случае, что является неизбежным признаком повреждения тканей. Поэтому при купировании болевых синдромов целесообразно использовать лекарственные препараты, способные стабилизировать физиологические функции организма.

После организации защитного поведения боль утрачивает свои адаптивные функции и приобретают значение самостоятельного патогенетического фактора. Для многих заболеваний боль – одно из первых, а иногда и единственное проявление патологии и главный диагностический индикатор.

По месту приложения повреждающего фактора выделяют два рода боли: соматическую и висцеральную . Соматическая боль связана с экстремальными внешними воздействиями, а висцеральная обусловлена внутренними патологическими процессами.

Соматическая боль подразделяется на два типа: первичную и вторичную . Первичная (эпикритическая ) боль проявляется сразу после повреждения, быстро осознается, легко детерминируется по качеству и локализации, исчезает после прекращения вредоносной стимуляции, сопровождается адаптацией. Вторичная (протопатическая ) боль проявляется через 0,5-1 с после первичного ощущения, медленно осознается, плохо детерминируется по качеству и локализации, сохраняется длительное время после прекращения стимуляции, не сопровождается адаптацией.

В настоящее время имеется три основных теории механизмов восприятия боли:

1) теория интенсивности,

2) теория специфичности,

3) теория распределения импульсов.

Согласно теории интенсивности сверхсильная стимуляция рецепторов, независимо от их модальности, вызывает высокоамплитудные РП и высокочастотную разрядную деятельность сенсорных нейронов, которая трасформируется ЦНС в ощущение боли (амплитудно-частотное кодирование).

Согласно теории распределения импульсов повреждающие стимулы вызывают особый порядок следования (паттерн) афферентных импульсов, который отличается от разрядной деятельности, вызванной индифферентными для организма факторами (интервально-импульсное кодирование). При этом ЦНС преобразует поступающий афферентный поток в ощущение боли.

В противоположность этому теория специфичности предполагает (по аналогии с другими сенсорными системами) существование специальных рецепторов и афферентов, реагирующих возбуждением только на такие по интенсивности стимулы, которые могут повредить ткань (двоичное и пространственное кодирование).

Таким образом, раздражитель может вызвать ощущение боли только в том случае, если под его влиянием формируется особая, алгогенная сигнализация - поток афферентных возбуждений, в котором по амплитудно-частотно-пространственному принципу закодирована информация об угрозе разрушения или уже произошедшим повреждении тканей организма.

Сенсорная система, обеспечивающая восприятие вредоносных раздражителей, называется ноцицептивной . Рецепторы этой системы – ноцицепторы , подразделяются на четыре вида:

1) механочувствительные, которые возбуждаются в результате механического смещения рецепторной мембраны,

2) хемочувствительные, реагирующие на химические вещества, которые выделяются поврежденными клетками (ацетилхолин, гистамин, серотонин, простагландины),

3) термочувствительные, которые активируются под влиянием термических стимулов, выходящих за пределы физиологического диапазона,

4) полимодальные, реагирующие как на химические вещества, так и на интенсивные механические и термические стимулы.

Ноцицепторы относятся к неадаптирующимся, высокопороговым рецепторам. В коже лица и слизистой оболочки рта, а также периодонте, пульпе и дентине зубов они преимущественно представлены свободными нервными окончаниями.

Выраженной болевой чувствительностью отличается слизистая оболочка вестибулярной поверхности нижней челюсти в области боковых резцов. Наименьшей болевой чувствительностью характеризуется язычная поверхность слизистой оболочки десен. На внутренней поверхности щеки в области верхних моляров имеется узкий участок слизистой, абсолютно лишенный болевой чувствительности.

Исключительно сильное болевое ощущение возникает даже при легком прикосновении к пульпе зуба, что обусловлено высокой плотностью высокочувствительных нервных окончаний и волокон, которые проникают в дентин вплоть до эмалево-дентинной границы. На 1 см 2 дентина приходится 15000-30000 болевых рецепторов, на границе эмали и дентина количество ноцицепторов доходит до 75000, тогда как в коже их число не превышает 200. Все это является причиной особой жестокости боли, возникающей под влиянием температурных, химических и механических раздражителей при повреждении и разрушении тканей зубов, в том числе и при их лечении.

Сенсорные сигналы от ноцицепторов ротового отдела поступают в ЦНС по миелинизированным нервным волокнам типов Аb и Аd, а также по безмиелиновым волокнам группы С, большинство которых проходит в составе второй и третей ветви тройничного нерва. Информация от ноцицепторов о неблагополучии тканей ротового отдела поступает в заднюю центральную извилину и к медиальным отделам орбитальной коры больших полушарий.

Тесная взаимосвязь между различными ядрами тройничного нерва и их взаимодействие с ядрами ретикулярной формации обусловливает широкую иррадиацию возбуждения, затрудняющую локализацию зубной боли и ее отражение (проецирование) в достаточно отдаленные участки лица, головы и шеи.

Иногда после операции удаления пораженного зуба сохраняется ощущение боли, которая называется фантомной . Фантомные боли обусловлены тем, что предшествующая удалению ноцицептивная афферентация от пораженного зуба вызывает нейрогенную (центральную ) сенситизацию - увеличение чувствительности, связанное с повышением возбудимости в проводниковом и центральном отделах ноцицептивной системы. Дополнительное раздражение во время операции вызывает появление стойких патологически усиленных очагов циркуляции возбуждения в ЦНС, которое воспринимается клетками коры мозга как длительные, часто непрерывные боли. Лечебные мероприятия местного характера не приводят к уменьшению или прекращению таких болей, так как их источник лежит в структурах ЦНС, на которые следует воздействовать, активируя антиноцицептивную систему мозга.

Основные функции эндогенной антиноцицептианой системы – ограничение уровня болевого возбуждения, а также регуляция и поддержание порога болевой чувствительности. Это обеспечивается за счет механизмов пресинаптического и постсинаптического торможения ноцицептивных нейронов на всех уровнях ЦНС. В реализации влияния антиноцицептивной системы участвуют опиатные, адренергические, дофаминергические и серотонинергические структуры мозга. Ведущее значение при этом имеет выработка опиатных морфиноподобных соединений – эндорфинов, энкефалинов и динарфинов.

Болевой порог является результатом взаимодействия ноцицептивной и антиноцицептивной системы, которая находится в состоянии постоянной тонической активности. Устранение постоянного тормозного влияния антиноцицептивной системы может привести к состоянию гипералгии или даже возникновению самопроизвольных болевых ощущений. Повышение тонической активности антиноцицептивной системы приводит к развитию врожденных аналгий – нечувствительности к боли.

Страх, подавляя активность антиноцицептивной системы, резко усиливает реакцию на боль, снижают порог болевой чувствительности, а состояния типа агрессии-ярости, напротив, увеличивают его. Переоценка интенсивности боли может быть связана с подготовкой и ожиданием медицинских манипуляций. Однако болевая чувствительность снижается, когда человек заранее предупрежден о характере предстоящего воздействия. Разъяснение или отвлекающие беседы перед операцией существенно ослабляет болевые ощущения и снижают потребность в обезболивающих средствах.

Специфической особенностью сенсорной функции ротового отдела является вкусовая чувствительность .

Вкус – ощущение, возникающее в результате восприятия четырех элементарных вкусовых качеств химических веществ, растворенных в ротовой жидкости – сладкого , горького , кислого и соленого .

Сенсорная система, которая осуществляет контактное восприятие и оценку вкусовых свойств химических веществ, действующих на орган вкуса , называется вкусовым анализатором .

Орган вкусачеловека представлен вкусовыми почками которые локализуются, преимущественно, в сосочках языка : грибовидных , листовидных и желобовидных . Грибовидные сосочки располагаются, главным образом, на слизистой кончика языка, листовидные сосочки - вдоль боковой поверхности задних отделов языка, а желобовидные – поперек спинки, у корня языка. Отдельные вкусовые почки имеются на мягком и твердом небе, задней стенке глотки, миндалинах, надгортаннике и гортани.

(прикосновение)

После того как я описал структуру и строение нервной системы, настало время подумать, как же работает эта система. Очень легко видеть, что для того, чтобы нервная система могла управлять действиями организма с пользой для последнего, она должна постоянно оценивать детали окружающей среды. Бесполезно быстро опускать голову, если ей не грозит столкновение с каким-то предметом. С другой стороны, очень опасно не сделать этого, если такая угроза существует.

Для того чтобы иметь представление о состоянии окружающей среды, надо ее ощущать или воспринимать. Организм ощущает окружающую среду путем взаимодействия специализированных нервных окончаний с теми или иными факторами среды. Взаимодействие интерпретируется центральной нервной системой способами, которые отличаются друг от друга в зависимости от природы воспринимающих нервных окончаний. Каждая форма взаимодействия и интерпретации выделяется в виде особого вида сенсорного (чувственного) восприятия.

В обыденной речи мы обычно различаем пять чувств - зрение, слух, вкус, обоняние и тактильную чувствительность, или ощущение прикосновения. Мы располагаем отдельными органами, каждый из которых отвечает за один из видов восприятия. Образы мы воспринимаем с помощью глаз, слуховые стимулы с помощью ушей, запахи достигают нашего сознания через нос, вкус мы ощущаем языком. Эти ощущения мы можем сгруппировать в один класс и назвать специализированными ощущениями, так как каждое из них требует участия особого (то есть специального) органа.

Для восприятия тактильных ощущений не требуется никакого особого органа. Нервные окончания, воспринимающие прикосновения, рассеяны по всей поверхности тела. Осязание - это пример общего ощущения.

Мы довольно плохо дифференцируем ощущения, восприятие которых не требует участия специальных органов, и поэтому говорим о прикосновении как о единственном ощущении, которое мы воспринимаем кожей. Например, мы часто говорим, что какой-то предмет «горяч на ощупь», хотя в действительности прикосновение и воздействие температуры воспринимаются разными нервными окончаниями. Способность воспринимать прикосновение, давление, жар, холод и боль объединяется общим термином - кожная чувствительность, так как нервные окончания, которыми мы воспринимаем эти раздражения, находятся в коже. Эти нервные окончания называются также экстероцепторами (от латинского слова «экстра», что означает «снаружи»). Экстероцепция существует также внутри организма, так как окончания, расположенные в стенке желудочно-кишечного тракта, по сути, являются экстероцепторами, поскольку этот тракт сообщается с окружающей средой посредством рта и заднего прохода. Можно было бы считать ощущения, возникающие в результате раздражения этих окончаний, разновидностью внешней чувствительности, но ее выделяют в особый вид, называемый интероцепцией (от латинского слова «интра» - «внутри»), или висцеральной чувствительностью.

Наконец, существуют нервные окончания, передающие сигналы от органов самого тела - от мышц, сухожилий, связок суставов и тому подобного. Такая чувствительность называется проприоцептивной («проприус» па латинском языке означает «собственный»). Мы меньше всего осознаем именно проприоцептивную чувствительность, воспринимая результаты ее работы как нечто само собой разумеющееся. Проприоцептивную чувствительность реализуют специфические нервные окончания, находящиеся в различных органах. Для наглядности можно упомянуть о нервных окончаниях, расположенных в мышцах, в так называемых специализированных мышечных волокнах. При растяжении или сокращении этих волокон в нервных окончаниях возникают импульсы, которые передаются по нервам в спинной мозг, а потом, по восходящим трактам, в ствол головного мозга. Чем больше степень растяжения или сокращения волокна, тем больше порождается импульсов в единицу времени. Другие нервные окончания реагируют на давление в ступнях при стоянии или в ягодичных мышцах при сидении. Есть и другие разновидности нервных окончаний, реагирующих на степень напряжения в связках, на угол взаимного расположения костей, соединенных в суставах, и так далее.

Нижние отделы мозга обрабатывают поступающие сигналы от всех частей тела и используют эту информацию для координации и организации движений мышц, призванных сохранять равновесие, менять неудобное положение тела и приспосабливаться к внешним условиям. Хотя обычная работа организма по координации движений во время стояния, сидения, ходьбы или бега ускользает от нашего сознания, определенные ощущения иногда достигают коры большого мозга, и благодаря им мы в любой момент времени отдаем себе отчет в относительном положении частей нашего тела. Мы, не глядя, точно знаем, где и как расположен наш локоть или большой палец ноги, и с закрытыми глазами можем прикоснуться к любой названной нам части тела. Если кто-то согнет нашу руку в локте, мы точно знаем, в какое положение переведена наша конечность, и для этого нам не надо на нее смотреть. Для того чтобы это делать, нам необходимо постоянно интерпретировать бесчисленные сочетания нервных импульсов, поступающих в мозг от растянутых или изогнутых мышц, связок и сухожилий.

Различные проприоцептивные восприятия иногда объединяются общим названием позиционного чувства, или чувства положения. Часто это чувство называется кинестетическим (от греческих слов, обозначающих «чувство движения»). Неизвестно, в какой степени это чувство зависит от взаимодействия сил, развиваемых мышцами, с силой гравитации. Этот вопрос стал особенно актуальным для биологов в последнее время, в связи с развитием космонавтики. Во время длительных космических полетов космонавты долгое время пребывают в состоянии невесомости, когда проприоцептивная чувствительность лишена сигналов о привычном воздействии гравитации.

Что же касается экстероцептивной чувствительности, воспринимающей такие модальности, как прикосновение, давление, жар, холод и боль, то она опосредуется нервными импульсами, которые генерируются в нервных окончаниях определенного типа для каждого вида чувствительности. Для восприятия всех видов раздражителей, кроме болевых, нервные окончания обладают определенными структурами, которые называются по именам ученых, впервые описавших эти структуры.

Так, тактильные рецепторы (то есть структуры, воспринимающие прикосновения) часто заканчиваются тельцами Мейсснера, которые были описаны немецким анатомом Георгом Мейсснером в 1853 году. Рецепторы, воспринимающие холод, называются колбочками Краузе, по имени впервые описавшего в 1860 году эти структуры немецкого анатома Вильгельма Краузе. Тепловые рецепторы называются концевыми органами Руффини, по имени итальянского анатома Анджело Руффини, который описал их в 1898 году. Рецепторы давления называются тельцами Пачини, по имени итальянского анатома Филиппо Пачини, который описал их в 1830 году. Каждый из этих рецепторов легко отличить от прочих рецепторов по его морфологическому строению. (Однако болевые рецепторы представляют собой просто оголенные окончания нервных волокон, лишенных каких-либо структурных особенностей.)

Специализированные нервные окончания каждого типа приспособлены для восприятия только одного вида раздражения. Легкое прикосновение к коже в непосредственной близости от тактильного рецептора вызовет возникновение импульса в нем, но не вызовет никакой реакции в других рецепторах. Если же к коже прикоснуться теплым предметом, то на это отреагирует тепловой рецептор, а прочие не ответят никакой реакцией. В каждом случае нервные импульсы сами по себе идентичны в любом из этих нервов (действительно, импульсы идентичны во всех нервах), но их интерпретация в центральной нервной системе зависит от того, какой именно нерв передал тот или иной импульс. Например, импульс от теплового рецептора вызовет ощущение тепла вне зависимости от природы стимула. При стимуляции других рецепторов возникают также специфические ощущения, характерные только для данного вида рецепторов и не зависящие от природы стимула.

(Это верно и для специализированных органов чувств. Общеизвестен факт, что когда человек получает удар в глаз, то из него «сыплются искры», то есть головной мозг интерпретирует как свет любое раздражение зрительного нерва. Резкое надавливание на глаз также вызовет ощущение света. То же самое происходит при стимуляции языка слабым электрическим током. У человека при таком раздражении появляется некое вкусовое ощущение.)

Кожные рецепторы расположены не в каждом участке кожи, и там, где присутствует рецептор какого-либо типа, могут отсутствовать рецепторы других типов. Кожу можно картировать по различным видам чувствительности. Если мы воспользуемся тонким волоском, чтобы прикасаться к различным участкам кожи, то обнаружим, что в некоторых местах человек воспринимает прикосновение, а в некоторых - нет. Затратив еще немного труда, мы можем подобным же образом картировать кожу по тепловой и холодовой чувствительности. Промежутки между рецепторами невелики, и поэтому в обыденной жизни мы практически всегда отвечаем на стимулы, которые раздражают нашу кожу. Всего в коже расположены 200 000 нервных окончаний, реагирующих на температуру, полмиллиона рецепторов, реагирующих на прикосновение и давление, и около трех миллионов болевых рецепторов.

Как и следует ожидать, тактильные рецепторы наиболее густо расположены в языке и в кончиках пальцев, то есть в тех местах, которые самой природой предназначены для исследования свойств окружающего мира. Язык и кончики пальцев лишены волосяного покрова, но в других участках кожи тактильные рецепторы связаны с волосами. Волосы - мертвые структуры, полностью лишенные чувствительности, но все мы хорошо знаем, что человек ощущает любое, даже легчайшее прикосновение к волосам. Очевидный парадокс объясняется очень просто, если мы поймем, что при прикосновении к волосу он сгибается и, как рычаг, оказывает давление на расположенный рядом с ним участок кожи. Таким образом, происходит стимуляция тактильных рецепторов, расположенных в непосредственной близости от корня волоса.

Это очень полезное свойство, так как оно позволяет нам чувствовать прикосновение без прямого контакта кожи с инородным предметом. Ночью мы можем определить местонахождение неодушевленного предмета (который мы не можем увидеть, услышать или учуять), если коснемся его нашими волосами. (Существует еще способность к эхолокации, которую мы вскоре будем обсуждать.)

Некоторые ночные животные доводят до совершенства свою «волосяную чувствительность». Самый знакомый пример - семейство кошачьих, к которым относятся известные всем домашние кошки. У этих животных есть усы, которые зоологи называют вибриссами. Это длинные волосы, они касаются предметов на довольно большом удалении от поверхности тела. Волосы довольно жесткие, поэтому физическое воздействие передается к коже без затухания, то есть с минимальными потерями. Вибриссы расположены вблизи пасти, где концентрация тактильных рецепторов очень высока. Таким образом омертвевшие структуры, нечувствительные сами по себе, стали чрезвычайно тонкими органами восприятия тактильных стимулов.

Если прикосновение становится более интенсивным, то оно начинает стимулировать тельца Пачини в нервных окончаниях, воспринимающих давление. В отличие от тактильных рецепторов, расположенных на поверхности кожи, органы восприятия давления локализованы в подкожных тканях. Между этими нервными окончаниями и окружающей средой находится довольно толстый слой ткани, и воздействие должно быть сильнее, чтобы преодолеть смягчающее воздействие этой предохраняющей подушки.

С другой стороны, если прикосновение длится достаточно долго, то нервные окончания тактильных рецепторов становятся все менее и менее чувствительными и, в конце концов, перестают реагировать на прикосновение. То есть вы осознаете прикосновение в самом его начале, но если его интенсивность остается неизменной, то ощущение прикосновения исчезает. Это разумное решение, потому что в противном случае мы постоянно ощущали бы прикосновение к коже одежды и множества других предметов, и эти ощущения загрузили бы наш головной мозг массой ненужной и бесполезной информации. В этом отношении подобным образом ведут себя и температурные рецепторы. Например, вода в ванне кажется нам очень горячей, когда мы ложимся в нее, но потом, по мере того как мы «привыкаем» к ней, она становится приятно теплой. Точно так же холодная озерная вода становится приятно прохладной через некоторое время после того, как мы в нее ныряем. Активирующая ретикулярная формация блокирует поток импульсов, которые несут бесполезную или незначимую информацию, освобождая головной мозг для более важных и насущных дел.

Для того чтобы ощущение прикосновения воспринималось длительно, необходимо, чтобы его характеристики постоянно менялись во времени и чтобы в него все время вовлекались новые рецепторы. Таким образом, прикосновение превращается в щекотку или ласку. Таламус способен до некоторой степени локализовать такие ощущения, но для точного определения места прикосновения в игру должна включиться кора большого мозга. Такое тонкое различение выполняется в сенсорной области коры. Так, когда нам на кожу садится комар, точный удар следует немедленно, даже без взгляда па несчастное насекомое. Точность пространственного различения варьируется в зависимости от места на коже. Мы воспринимаем как раздельные прикосновения к двум точкам на языке, удаленным друг от друга на расстояние 1,1 мм. Для того чтобы два прикосновения воспринимались как раздельные, расстояние между стимулируемыми точками на пальцах должно быть не менее 2,3 мм. В носу такое расстояние достигает 6,6 мм. Однако стоит сравнить эти данные с данными, полученными для кожи спины. Там два прикосновения воспринимаются как раздельные, если расстояние между ними превышает 67 мм.

При интерпретации ощущений центральная нервная система не просто дифференцирует один тип ощущений от другого или одно место раздражения от другого. Она также определяет интенсивность раздражения. Например, мы легко определяем, какой из двух предметов тяжелее, если возьмем по одному в каждую руку, даже если эти предметы похожи по объему и форме. Более тяжелый предмет сильнее давит на кожу, сильнее возбуждает рецепторы давления, которые в ответ разряжаются более частыми залпами импульсов. Мы можем также взвесить эти предметы, поочередно перемещая их вверх и вниз. Более тяжелый предмет требует большего мышечного усилия для преодоления силы тяжести при движениях одной и той же амплитуды, и наше проприоцептивное чувство скажет нам, какая из рук развивает большее усилие при поднятии своего предмета. (То же самое касается и других чувств. Мы различаем степень тепла или холода, интенсивности боли, яркости света, громкости звука и силы запаха или вкуса.)

Очевидно, что существует некий порог различения. Если один предмет весит 9 унций, а другой 18, то мы легко определим эту разницу даже с закрытыми глазами, просто взвесив эти предметы на ладонях рук. Если один предмет весит 9 унций, а другой 10, то нам придется «покачать» предметы на руках, но в конце концов верный ответ будет все же найден. Однако если один предмет весит 9 унций, а другой 9,5 унций, то определить разницу, скорее всего, не удастся. Человек будет колебаться, и его ответ может с равной долей вероятности оказаться как верным, так и ошибочным. Способность различать силу стимулов лежит не в абсолютной их разнице, а в относительной. Роль в различении предметов весом 9 и 10 унций соответственно играет разница в 10 %, а не абсолютная разница в одну унцию. Например, мы не сможем определить разницу между предметами весом в 90 и 91 унцию, хотя разница в весе составляет ту же самую одну унцию. Зато мы легко уловим разницу между предметами весом 90 и 100 унций. Однако нам будет довольно просто определить разницу между весами предметов, если один из них весит одну унцию, а другой одну унцию с четвертью, хотя разница между этими величинами намного меньше одной унции.

По-иному то же самое можно сказать так: организм оценивает разницу в интенсивности любых сенсорных стимулов по логарифмической шкале. Этот закон называется законом Вебера - Фехнера, по именам двух немецких ученых - Эрнста Генриха Вебера и Густава Теодора Фехнера, которые его открыли. Функционируя таким образом, органы чувств способны обработать больший диапазон интенсивностей стимулов, чем это было бы возможно при линейном их восприятии. Предположим, например, что какое-то нервное окончание может при максимальном воздействии разряжаться в двадцать раз чаще, чем при минимальном. (При уровне раздражения выше максимального наступает повреждение нерва, а при уровне ниже минимального ответ попросту отсутствует.) Если бы нервное окончание реагировало на раздражение по линейной шкале, то максимальный стимул мог бы быть всего в двадцать раз сильнее минимального. При использовании же логарифмической шкалы - даже если взять 2 за основание логарифма - максимальная частота разрядов с нервного окончания будет достигнута, если максимальный стимул будет в два в двадцатой степени раз выше, чем минимальный. Это число приблизительно равно миллиону.

Именно благодаря тому, что нервная система работает согласно закону Вебера -Фехнера, мы способны слышать гром и шорох листвы, видеть солнце и едва заметные звезды.

Тактильные рецепторы , или рецепторы прикосновения и давления расположены на поверхности кожи.

Рецепторами прикосновения являются мейснеровы тельца, находящиеся в кожных сосочках, и меркелевы диски, расположенные особенно в большом количестве на кончиках пальцев и губах. На коже, покрытой волосами, высокочувствительны к прикосновению волосы. Это объясняется тем, что корень волоса обвивается нервным сплетением и всякое прикосновение к волосу передается этому сплетению, вызывая его возбуждение. Сбривание волос сильно понижает чувствительность кожи к прикосновению. Рецепторами давления являются пачиниевы тельца.

Проводниками тактильной рецепции служат толстые миелиновые волокна. Электрофизиологическая регистрация потенциалов действия показала, что даже при очень коротком раздражении тактильных рецепторов в них возникает не один импульс, а целая серия разрядов.

Адаптация тактильных рецепторов . Тактильные рецепторы способе к быстрой адаптации, поэтому ощущается только изменение давления, а не само давление. Если на подошвенную подушечку лапы кошки положить груз, то в рецепторе возникают нервные импульсы, частота которых может достигать 250-350 имп/сек. Эта импульсация длится несколько секунд и прекращается вследствие наступления адаптации. У человека уменьшение частоты импульсов сопровождается уменьшением силы ощущения.
Скорость адаптации разных кожных рецепторов неодинакова. Haиболее быстро адаптируются рецепторы, расположенные у корней волос, и пачиниевы тельца.
Вследствие адаптации человек ощущает давление одежды только в тот момент, когда ее надевает или когда при движении одежда трется о кожу.

Локализация тактильных ощущении . Все ощущения прикосновения и давления человек очень точно относит к определенному месту кожи. Локализация осязательных ощущений вырабатывается посредством опыта под контролем других органов чувств, главным образом зрения и мышечного чувства. Для доказательства можно привести знаменитый опыт Аристотеля: прикосновение перекрещенными указательным и средним пальцами к маленькому шарику дает ощущение прикосновения к двум шарикам, так как обыденный опыт учит, что внутренней стороны указательного пальца и наружной стороны среднего одновременно могут касаться только два раздельных шарика.

Измерение тактильной чувствительности . Тактильная чувствительность развита весьма различно на разных местах кожи. Тактильную чувствительность измеряют эстезиометром Фрея, с помощью которого определяют силу давления, необходимую для раздражения рецепторов и возникновения ощущения.

Порог раздражения самых чувствительных участков кожи равен 50 мг, наименее чувствительных - 10 г. Чувствительность губ, носа, языка наиболее высока, чувствительность спины, подошвы стопы, живота наименьшая.

Пороги пространства . При одновременном прикосновении к двум точкам кожи не всегда ощущаются два прикосновения: если эти две точки лежат близко друг к другу, то может возникнуть ощущение только одного прикосновения. То наименьшее расстояние между двумя точками кожи, при раздражении которых возникает ощущение двух прикосновений, называется порогом пространства.

Пороги пространства измеряют с помощью циркуля, или эстезиометра Вебера, представляющего собой циркуль со шкалой, обозначающей расстояние между его ножками в миллиметрах.

Пороги пространства весьма различны на разных местах кожи, т. е. ощущение двух прикосновений возникает при разном расстоянии ножек циркуля (рис. 194 ). Пороги пространства минимальны на кончиках пальцев, губах и кязыке, где они равны 1-2,5 мм, и максимальны на бедре, плече и спине (свыше 00 мм).

Пороги пространства отчасти зависят от того, насколько афферентные нервные волокна ветвятся на периферии и от какого числа рецепторов передает импульсы одно нервное волокно. Согласно электрофизиологическим наблюдениям, площадь кожной поверхности, иннервируемой одним аыферентным волокном, в разных участках тела различна и составляет от нескольких квадратных миллиметров до 2-3 см2 н более.

Рис. 194. Величины порогов пространства на разных участках тела человека.